Ukr.Biochem.J. 2015; Volume 87, #2, March-April

Lipoxygenases and plant cell metabolism regulation

I. V. Pokotylo, Y. S. Kolesnikov, M. V. Derevyanchuk, A. I. Kharitonenko, V. S. Kravets

Institute of Bioorganic Chemistry and Petrochemistry,
National Academy of Sciences of Ukraine, Kyiv;
e-mail: kravets@bpci.kiev.ua

Lipoxygenases are widespread plant enzymes that catalyze the peroxidation of polyunsaturated fatty acids. This reaction is pivotal in the enzymatic cascade that leads to production of numerous metabolism regulators named oxylipins. The activity of these biologically active substances is directly associated with defence reactions in conditions of biotic and abiotic stresses as well as with the regulation of plant growth, propagation and senescence. In this review the contemporary notions about lipoxygenases­ classification, structure and catalytic properties are summarized. The features of enzyme activity regulation by transcriptional and posttranslational mechanisms in addition to the role of lipoxygenase catalysis in plant cell signalling are discussed.

Ключевые слова: , , , , ,


Ссылки:

  1. Wennman A, Oliw EH. Secretion of two novel enzymes, manganese 9S-lipoxygenase and epoxy alcohol synthase, by the rice pathogen Magnaporthe salvinii. J Lipid Res. 2013 Mar;54(3):762-75. Epub 2012 Dec 11. [pm id="23233731"], [pmc id="PMC3617950"], [cr id="http://dx.doi.org/10.1194/jlr.M033787"]
  2. Heshof R, Jylhä S, Haarmann T, Jørgensen AL, Dalsgaard TK, de Graaff LH. A novel class of fungal lipoxygenases. Appl Microbiol Biotechnol. 2014 Feb;98(3):1261-70. Epub 2013 Nov 26. [pm id="24276623"], [cr id="http://dx.doi.org/10.1007/s00253-013-5392-x"]
  3. Chechetkin IR, Osipova EV, Tarasova NB, Mukhitova FK, Hamberg M, Gogolev YV, Grechkin AN. Specificity of oxidation of linoleic acid homologs by plant lipoxygenases. Biochemistry (Mosc). 2009 Aug;74(8):855-61. [pm id="19817685"]
  4. Kim K. R., Seo M. H., Park J. B., Oh D. K. Stereospecific production of 9R-hydroxy-10E,12Z-octadecadienoic acid from linoleic acid by recombinant Escherichia coli cells expressing 9R-lipoxygenase from Nostoc sp. SAG 25.82. J. Mol. Catalysis. B: Enzymatic. 2014;104:56-63.
  5. Lõhelaid H, Järving R, Valmsen K, Varvas K, Kreen M, Järving I, Samel N. Identification of a functional allene oxide synthase-lipoxygenase fusion protein in the soft coral Gersemia fruticosa suggests the generality of this pathway in octocorals. Biochim Biophys Acta. 2008 Feb;1780(2):315-21. Epub 2007 Oct 22. [pm id="17996204"]
  6. Ruelland E., Kravets V., Derevyanchuk M., Martinec J., Zachowski A., Pokotylo I. Role of phospholipid signalling in plant environmental responses. Environ. Exp. Bot. 2014. doi: 10.1016. j.envexpbot.2014.08.009.
  7.  Iny D., Grossman S., Pinsky A. Lipoxygenase of the thermophilic bacteria Thermoactinomyces vulgaris - properties and study on the active site. Int. J. Biochem. 1993;25(9):1325-1330.
  8. Liavonchanka A, Feussner I. Lipoxygenases: occurrence, functions and catalysis. J Plant Physiol. 2006 Feb;163(3):348-57. Epub 2005 Dec 28. Review. [pm id="16386332"]
  9. Mosblech A, Feussner I, Heilmann I. Oxylipins: structurally diverse metabolites from fatty acid oxidation. Plant Physiol Biochem. 2009 Jun;47(6):511-7. Epub 2008 Dec 25. Review. [pm id="19167233"], [cr id="http://dx.doi.org/10.1016/j.plaphy.2008.12.011"]
  10. Andreou A, Feussner I. Lipoxygenases - Structure and reaction mechanism. Phytochemistry. 2009 Sep;70(13-14):1504-10. Epub 2009 Sep 18. Review. [pm id="19767040"], [cr id="http://dx.doi.org/10.1016/j.phytochem.2009.05.008"]
  11. Liptáková Ľ., Huttová J., Mistrík I., Tamás L. Enhanced lipoxygenase activity is involved in the stress response but not in the harmful lipid peroxidation and cell death of short-term cadmium-treated barley root tip. J. Plant Physiol. 2013;170(7):646-652.
  12. Chechetkin I. R., Osipova E. V., Antsygina L. L., Gogolev Y. V., Grechkin A. N. Oxidation of glycerolipids by maize 9-lipoxygenase and its A562G mutan. Chem. Physics Lipids. 2011;164(3):216-220.
  13. Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S. Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol. 2013 Apr;161(4):2159-70. Epub 2013 Feb 26. [pm id="23444343"], [pmc id="PMC3613484"], [cr id="http://dx.doi.org/10.1104/pp.113.214544"]
  14. Savchenko T, Kolla VA, Wang CQ, Nasafi Z, Hicks DR, Phadungchob B, Chehab WE, Brandizzi F, Froehlich J, Dehesh K. Functional convergence of oxylipin and abscisic acid pathways controls stomatal closure in response to drought. Plant Physiol. 2014 Mar;164(3):1151-60. Epub 2014 Jan 15. [pm id="24429214"], [pmc id="PMC3938610"], [cr id="http://dx.doi.org/10.1104/pp.113.234310"]
  15. Nemchenko A, Kunze S, Feussner I, Kolomiets M. Duplicate maize 13-lipoxygenase genes are differentially regulated by circadian rhythm, cold stress, wounding, pathogen infection, and hormonal treatments. J Exp Bot. 2006;57(14):3767-79. Epub 2006 Sep 27. [pm id="17005920"]
  16. Yang XY, Jiang WJ, Yu HJ. The expression profiling of the lipoxygenase (LOX) family genes during fruit development, abiotic stress and hormonal treatments in cucumber (Cucumis sativus L.). Int J Mol Sci. 2012;13(2):2481-500. Epub 2012 Feb 22. [pm id="22408466"], [pmc id="PMC3292035"], [cr id="http://dx.doi.org/10.3390/ijms13022481"]
  17. Keunen E., Remans T., Opdenakker K., Jozefc­zak M., Gielen H., Guisez Y., Vangronsveld J., Cuypers A. A mutant of the Arabidopsis thaliana lipoxygenase1 gene shows altered signalling and oxidative stress related responses after cadmium exposure. Plant Physiol. Biochem. 2013;63:272-280.
  18. Schneider C, Pratt DA, Porter NA, Brash AR. Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chem Biol. 2007 May;14(5):473-88. Review. [pm id="17524979"], [pmc id="PMC2692746"]
  19. Ivanov I, Heydeck D, Hofheinz K, Roffeis J, O'Donnell VB, Kuhn H, Walther M. Molecular enzymology of lipoxygenases. Arch Biochem Biophys. 2010 Nov 15;503(2):161-74. Epub 2010 Aug 27. Review. [pm id="20801095"], [cr id="http://dx.doi.org/10.1016/j.abb.2010.08.016"]
  20. Hughes RK, Lawson DM, Hornostaj AR, Fairhurst SA, Casey R. Mutagenesis and modelling of linoleate-binding to pea seed lipoxygenase. Eur J Biochem. 2001 Feb;268(4):1030-40. [pm id="11179969"]
  21. Hughes RK, West SI, Hornostaj AR, Lawson DM, Fairhurst SA, Sanchez RO, Hough P, Robinson BH, Casey R. Probing a novel potato lipoxygenase with dual positional specificity reveals primary determinants of substrate binding and requirements for a surface hydrophobic loop and has implications for the role of lipoxygenases in tubers. Biochem J. 2001 Jan 15;353(Pt 2):345-55. [pm id="11139400"], [pmc id="PMC1221578"]
  22. Yamamoto S., Suzuki H., Ueda N. Arachidonate 12-lipoxygenases. Progress Lipid Res. 1997;36(1):23-41.
  23. Wisastra R, Ghizzoni M, Boltjes A, Haisma HJ, Dekker FJ. Anacardic acid derived salicylates are inhibitors or activators of lipoxygenases. Bioorg Med Chem. 2012 Aug 15;20(16):5027-32. Epub 2012 Jun 21. [pm id="22789707"], [cr id="http://dx.doi.org/10.1016/j.bmc.2012.06.019"]
  24. Caballero J, Fernández M, Coll D. Quantitative structure-activity relationship of organosulphur compounds as soybean 15-lipoxygenase inhibitors using CoMFA and CoMSIA. Chem Biol Drug Des. 2010 Dec;76(6):511-7. Epub 2010 Oct 11. [pm id="21040497"], [cr id="http://dx.doi.org/10.1111/j.1747-0285.2010.01039.x"]
  25. Senger T., Wichard T., Kunze S., Göbel C., Lerchl J., Pohnert G., Feussner I. A multifunctional lipoxygenase with fatty acid hydroperoxide cleaving activity from the moss Physcomitrella patens. J. Biolog. Chem. 2005;280(9):7588-7596.
  26. Küpper F. C., Gaquerel E., Boneberg E. M., Morath S., Salaün J: , Potin P. Early events in the perception of lipopolysaccharides in the brown alga Laminaria digitata include an oxidative burst and activation of fatty acid oxidation cascades. J. Exp. Bot. 2006;57(9):1991-1999.
  27. Gao X, Stumpe M, Feussner I, Kolomiets M. A novel plastidial lipoxygenase of maize (Zea mays) ZmLOX6 encodes for a fatty acid hydroperoxide lyase and is uniquely regulated by phytohormones and pathogen infection. Planta. 2008 Jan;227(2):491-503. Epub 2007 Oct 9. [pm id="17922288"]
  28. Zoeller M, Stingl N, Krischke M, Fekete A, Waller F, Berger S, Mueller MJ. Lipid profiling of the Arabidopsis hypersensitive response reveals specific lipid peroxidation and fragmentation processes: biogenesis of pimelic and azelaic acid. Plant Physiol. 2012 Sep;160(1):365-78. Epub 2012 Jul 22. [pm id="22822212"], [pmc id="PMC3440211"], [cr id="http://dx.doi.org/10.1104/pp.112.202846"]
  29. Agrawal GK, Tamogami S, Han O, Iwahashi H, Rakwal R. Rice octadecanoid pathway. Biochem Biophys Res Commun. 2004 Apr 23;317(1):1-15. Review. [pm id="15047141"]
  30. Youn B., Sellhorn G. E., Mirchel R. J., Gaffney B. J., Grimes H. D., Kang C. Crystal structures of vegetative soybean lipoxygenase VLX-B and VLX-D, and comparisons with seed isoforms LOX-1 and LOX-3. Proteins: Structure, Function, and Bioinformatics. 2006;65(4):1008-1020.
  31. Hammel M, Walther M, Prassl R, Kuhn H. Structural flexibility of the N-terminal beta-barrel domain of 15-lipoxygenase-1 probed by small angle X-ray scattering. Functional consequences for activity regulation and membrane binding. J Mol Biol. 2004 Oct 29;343(4):917-29. [pm id="15476810"]
  32. May C, Höhne M, Gnau P, Schwennesen K, Kindl H. The N-terminal beta-barrel structure of lipid body lipoxygenase mediates its binding to liposomes and lipid bodies. Eur J Biochem. 2000 Feb;267(4):1100-9. [pm id="10672019"]
  33. Oliw EH. Plant and fungal lipoxygenases. Prostaglandins Other Lipid Mediat. 2002 Aug;68-69:313-23. Review. [pm id="12432926"]
  34. Jang S, Huon T, Kim K, Um E, Han O. Regiochemical and stereochemical evidence for enzyme-initiated catalysis in dual positional specific maize lipoxygenase-1. Org Lett. 2007 Aug 2;9(16):3113-6. Epub 2007 Jul 13.  [pm id="17629290"]
  35. Wu F, Gaffney BJ. Dynamic behavior of fatty acid spin labels within a binding site of soybean lipoxygenase-1. Biochemistry. 2006 Oct 17;45(41):12510-8. [pm id="17029406"], [pmc id="PMC2515559"]
  36. Ruddat VC, Mogul R, Chorny I, Chen C, Perrin N, Whitman S, Kenyon V, Jacobson MP, Bernasconi CF, Holman TR. Tryptophan 500 and arginine 707 define product and substrate active site binding in soybean lipoxygenase-1. Biochemistry. 2004 Oct 19;43(41):13063-71. [pm id="15476400"]
  37. Palmieri-Thiers C, Alberti JC, Canaan S, Brunini V, Gambotti C, Tomi F, Oliw EH, Berti L, Maury J. Identification of putative residues involved in the accessibility of the substrate-binding site of lipoxygenase by site-directed mutagenesis studies. Arch Biochem Biophys. 2011 May 1;509(1):82-9. Epub 2011 Feb 21. [pm id="21345329"], [cr id="http://dx.doi.org/10.1016/j.abb.2011.02.008"]
  38. Feussner I., Wasternack C. Lipoxygenase catalyzed oxygenation of lipids. Lipid. Fett. 1998;100(4-5):146-152.
  39. Butovich I. A., Luk'yanova S. M., Reddy C. C. Oxidation of linoleyl alcohol by potato tuber lipoxygenase: kinetics and positional, stereo, and geometrical (cis, trans) specificity of the reaction. Arch. Biochem. Biophys. 2000;378(1):65-77.
  40. Butovich IA, Reddy CC. Enzyme-catalyzed and enzyme-triggered pathways in dioxygenation of 1-monolinoleoyl-rac-glycerol by potato tuber lipoxygenase. Biochim Biophys Acta. 2001 Apr 7;1546(2):379-98. [pm id="11295443"]
  41. Veronico P, Giannino D, Melillo MT, Leone A, Reyes A, Kennedy MW, Bleve-Zacheo T. A novel lipoxygenase in pea roots. Its function in wounding and biotic stress. Plant Physiol. 2006 Jul;141(3):1045-55. Epub 2006 May 5. [pm id="16679421"], [pmc id="PMC1489892"]
  42. Skrzypczak-Jankun E, Bross RA, Carroll RT, Dunham WR, Funk MO Jr. Three-dimensional structure of a purple lipoxygenase. J Am Chem Soc. 2001 Nov 7;123(44):10814-20. [pm id="11686682"]
  43. Minor W, Steczko J, Stec B, Otwinowski Z, Bolin JT, Walter R, Axelrod B. Crystal structure of soybean lipoxygenase L-1 at 1.4 A resolution. Biochemistry. 1996 Aug 20;35(33):10687-701. [pm id="8718858"]
  44. Knapp MJ, Klinman JP. Kinetic studies of oxygen reactivity in soybean lipoxygenase-1. Biochemistry. 2003 Oct 7;42(39):11466-75. [pm id="14516198"]
  45. Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem. 1999 Aug 20;274(34):23679-82. Review. [pm id="10446122"]
  46. Hamberg M, Gerwick WH. Biosynthesis of vicinal dihydroxy fatty acids in the red alga Gracilariopsis lemaneiformis: identification of a sodium-dependent 12-lipoxygenase and a hydroperoxide isomerase. Arch Biochem Biophys. 1993 Aug 15;305(1):115-22. [pm id="8342944"]
  47. Coffa G., Brash A. R. A single active site residue directs oxygenation stereospecificity in lipoxygenases: Stereocontrol is linked to the position of oxygenation. PNAS. 2004;101(44):15579-15584.
  48. Kühn H, Wiesner R, Rathmann J, Schewe T. Formation of ketodienoic fatty acids by the pure pea lipoxygenase-1. Eicosanoids. 1991;4(1):9-14. [pm id="1905562"]
  49. Lehnert N, Solomon EI. Density-functional investigation on the mechanism of H-atom abstraction by lipoxygenase. J Biol Inorg Chem. 2003 Feb;8(3):294-305. Epub 2002 Nov 14. [pm id="12589565"]
  50. Jones GD, Russell L, Darley-Usmar VM, Stone D, Wilson MT. Role of lipid hydroperoxides in the activation of 15-lipoxygenase. Biochemistry. 1996 Jun 4;35(22):7197-203. [pm id="8679548"]
  51. Ghanem ME, Ghars MA, Frettinger P, Pérez-Alfocea F, Lutts S, Wathelet JP, du Jardin P, Fauconnier ML. Organ-dependent oxylipin signature in leaves and roots of salinized tomato plants (Solanum lycopersicum). J Plant Physiol. 2012 Jul 15;169(11):1090-101. Epub 2012 Jun 3. [pm id="22664263"], [cr id="http://dx.doi.org/10.1016/j.jplph.2012.03.015"]
  52. Chauvin A., Caldelari D., Wolfender J. L., Farmer E. E. Four 13-lipoxygenases contri­bute to rapid jasmonate synthesis in wounded Arabidopsis thaliana leaves: a role for lipoxygenase 6 in responses to long-distance wound signals. New Phytologist. 2013;197(2):566-575.
  53. Rådmark O, Samuelsson B. 5-Lipoxygenase: mechanisms of regulation. J Lipid Res. 2009 Apr;50 Suppl:S40-5. Epub 2008 Nov 5. [pm id="18987389"], [pmc id="PMC2674731"], [cr id="http://dx.doi.org/10.1194/jlr.R800062-JLR200"]
  54. Cho K, Han Y, Woo JC, Baudisch B, Klösgen RB, Oh S, Han J, Han O. Cellular localization of dual positional specific maize lipoxygenase-1 in transgenic rice and calcium-mediated membrane association. Plant Sci. 2011 Sep;181(3):242-8. Epub 2011 Jun 14. [pm id="21763534"], [cr id="http://dx.doi.org/10.1016/j.plantsci.2011.05.016"]
  55. Maccarrone M, Salucci ML, van Zadelhoff G, Malatesta F, Veldink G, Vliegenthart JF, Finazzi-Agrò A. Tryptic digestion of soybean lipoxygenase-1 generates a 60 kDa fragment with improved activity and membrane binding ability. Biochemistry. 2001 Jun 12;40(23):6819-27. [pm id="11389595"]
  56. Thivierge K, Prado A, Driscoll BT, Bonneil E, Thibault P, Bede JC. Caterpillar- and salivary-specific modification of plant proteins. J Proteome Res. 2010 Nov 5;9(11):5887-95. Epub 2010 Sep 21. [pm id="20857983"], [cr id="http://dx.doi.org/10.1021/pr100643m"]
  57. Wang X, Bian Y, Cheng K, Gu LF, Ye M, Zou H, Sun SS, He JX. A large-scale protein phosphorylation analysis reveals novel phosphorylation motifs and phosphoregulatory networks in Arabidopsis. J Proteomics. 2013 Jan 14;78:486-98. Epub 2012 Oct 27. [pm id="23111157"], [cr id="http://dx.doi.org/10.1016/j.jprot.2012.10.018"]
  58. Engelsberger WR, Schulze WX. Nitrate and ammonium lead to distinct global dynamic phosphorylation patterns when resupplied to nitrogen-starved Arabidopsis seedlings. Plant J. 2012 Mar;69(6):978-95. Epub 2012 Jan 20. [pm id="22060019"], [pmc id="PMC3380553"], [cr id="http://dx.doi.org/10.1111/j.1365-313X.2011.04848.x"]
  59. Freire MA, Tourneur C, Granier F, Camonis J, El Amrani A, Browning KS, Robaglia C. Plant lipoxygenase 2 is a translation initiation factor-4E-binding protein. Plant Mol Biol. 2000 Sep;44(2):129-40. [pm id="11117257"]
  60. Holtman WL, Roberts MR, Oppedijk BJ, Testerink C, van Zeijl MJ, Wang M. 14-3-3 proteins interact with a 13-lipoxygenase, but not with a 9-lipoxygenase. FEBS Lett. 2000 May 26;474(1):48-52. [pm id="10828449"]
  61. Fuller MA, Weichert H, Fischer AM, Feussner I, Grimes HD. Activity of soybean lipoxygenase isoforms against esterified fatty acids indicates functional specificity. Arch Biochem Biophys. 2001 Apr 1;388(1):146-54. [pm id="11361131"]
  62. Liu SQ, Liu XH, Jiang LW. Genome-wide identification, phylogeny and expression analysis of the lipoxygenase gene family in cucumber. Genet Mol Res. 2011 Oct 25;10(4):2613-36. [pm id="22057958"], [cr id="http://dx.doi.org/10.4238/2011.October.25.9"]
  63. Majeran W., Cai Y., Sun Q., van Wijk K. J. Functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell Online. 2005;17(11):3111-3140.
  64. Park YS, Kunze S, Ni X, Feussner I, Kolomiets MV. Comparative molecular and biochemical characterization of segmentally duplicated 9-lipoxygenase genes ZmLOX4 and ZmLOX5 of maize. Planta. 2010 May;231(6):1425-37. Epub 2010 Mar 27. [pm id="20349083"], [cr id="http://dx.doi.org/10.1007/s00425-010-1143-8"]
  65. Grebner W, Stingl NE, Oenel A, Mueller MJ, Berger S. Lipoxygenase6-dependent oxylipin synthesis in roots is required for abiotic and biotic stress resistance of Arabidopsis. Plant Physiol. 2013 Apr;161(4):2159-70. Epub 2013 Feb 26. [pm id="23444343"], [pmc id="PMC3613484"], [cr id="http://dx.doi.org/10.1104/pp.113.214544"]
  66. Montillet JL, Leonhardt N, Mondy S, Tranchimand S, Rumeau D, Boudsocq M, Garcia AV, Douki T, Bigeard J, Laurière C, Chevalier A, Castresana C, Hirt H. An abscisic acid-independent oxylipin pathway controls stomatal closure and immune defense in Arabidopsis. PLoS Biol. 2013;11(3):e1001513. Epub 2013 Mar 19. [pm id="23526882"], [pmc id="PMC3602010"], [cr id="http://dx.doi.org/10.1371/journal.pbio.1001513"]
  67. Han C, Yin X, He D, Yang P. Analysis of proteome profile in germinating soybean seed, and its comparison with rice showing the styles of reserves mobilization in different crops. PLoS One. 2013;8(2):e56947. Epub 2013 Feb 27. [pm id="23460823"], [pmc id="PMC3584108"], [cr id="http://dx.doi.org/10.1371/journal.pone.0056947"]
  68. Cenzano A, Abdala G, Hause B. Cytochemical immuno-localization of allene oxide cyclase, a jasmonic acid biosynthetic enzyme, in developing potato stolons. J Plant Physiol. 2007 Nov;164(11):1449-56. Epub 2007 Jan 16. [pm id="17223227"]
  69. Jørgensen M, Bauw G, Welinder KG. Molecular properties and activities of tuber proteins from starch potato cv. Kuras. J Agric Food Chem. 2006 Dec 13;54(25):9389-97. [pm id="17147423"]
  70. López MA, Vicente J, Kulasekaran S, Vellosillo T, Martínez M, Irigoyen ML, Cascón T, Bannenberg G, Hamberg M, Castresana C. Antagonistic role of 9-lipoxygenase-derived oxylipins and ethylene in the control of oxidative stress, lipid peroxidation and plant defence. Plant J. 2011 Aug;67(3):447-58. Epub 2011 Jun 6. [pm id="21481031"], [cr id="http://dx.doi.org/10.1111/j.1365-313X.2011.04608.x"]
  71. Bell E, Creelman RA, Mullet JE. A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8675-9. [pm id="7567995"], [pmc id="PMC41029"]
  72. Caldelari D, Wang G, Farmer EE, Dong X. Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol Biol. 2011 Jan;75(1-2):25-33. Epub 2010 Nov 3. [pm id="21052784"], [cr id="http://dx.doi.org/10.1007/s11103-010-9701-9"]
  73. Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D. Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol. 2004 Sep;136(1):2641-51. Epub 2004 Sep 3. [pm id="15347800"], [pmc id="PMC523329"]
  74. Kolomiets MV, Hannapel DJ, Chen H, Tymeson M, Gladon RJ. Lipoxygenase is involved in the control of potato tuber development. Plant Cell. 2001 Mar;13(3):613-26. [pm id="11251100"], [pmc id="PMC135504"]
  75. León J, Royo J, Vancanneyt G, Sanz C, Silkowski H, Griffiths G, Sánchez-Serrano JJ. Lipoxygenase H1 gene silencing reveals a specific role in supplying fatty acid hydroperoxides for aliphatic aldehyde production. J Biol Chem. 2002 Jan 4;277(1):416-23. Epub 2001 Oct 23. [pm id="11675388"]
  76. Zhang B, Chen K, Bowen J, Allan A, Espley R, Karunairetnam S, Ferguson I. Differential expression within the LOX gene family in ripening kiwifruit. J Exp Bot. 2006;57(14):3825-36. Epub 2006 Oct 10. [pm id="17032731"]
  77. Zhang B, Yin XR, Li X, Yang SL, Ferguson IB, Chen KS. Lipoxygenase gene expression in ripening kiwifruit in relation to ethylene and aroma production. J Agric Food Chem. 2009 Apr 8;57(7):2875-81. [pm id="19334761"], [cr id="http://dx.doi.org/10.1021/jf9000378"]
  78. Zhao J, Devaiah SP, Wang C, Li M, Welti R, Wang X. Arabidopsis phospholipase Dβ1 modulates defense responses to bacterial and fungal pathogens. New Phytol. 2013 Jul;199(1):228-40. Epub 2013 Apr 12. [pm id="23577648"], [pmc id="PMC4066384"], [cr id="http://dx.doi.org/10.1111/nph.12256"]
  79. Hwang IS, Hwang BK. The pepper 9-lipoxygenase gene CaLOX1 functions in defense and cell death responses to microbial pathogens. Plant Physiol. 2010 Feb;152(2):948-67. Epub 2009 Nov 25. [pm id="19939946"], [pmc id="PMC2815858"], [cr id="http://dx.doi.org/10.1104/pp.109.147827"]
  80. Li R, Afsheen S, Xin Z, Han X, Lou Y. OsNPR1 negatively regulates herbivore-induced JA and ethylene signaling and plant resistance to a chewing herbivore in rice. Physiol Plant. 2013 Mar;147(3):340-51. Epub 2012 Jul 12. [pm id="22694163"], [cr id="http://dx.doi.org/10.1111/j.1399-3054.2012.01666.x"]
  81. Mao P, Duan M, Wei C, Li Y. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant Cell Physiol. 2007 Jun;48(6):833-42. Epub 2007 May 16. [pm id="17510065"]
  82. Marmey P, Jalloul A, Alhamdia M, Assigbetse K, Cacas JL, Voloudakis AE, Champion A, Clerivet A, Montillet JL, Nicole M. The 9-lipoxygenase GhLOX1 gene is associated with the hypersensitive reaction of cotton Gossypium hirsutum to Xanthomonas campestris pv malvacearum. Plant Physiol Biochem. 2007 Aug;45(8):596-606. Epub 2007 May 18. [pm id="17611116"]
  83. Podolyan A., White J., Jordan B., Winefield C. Identification of the lipoxygenase gene family from Vitis vinifera and biochemical characterisation of two 13-lipoxygenases expressed in grape berries of Sauvignon Blanc. Funct. Plant Biol. 2010;37(8):767-784.
  84. Royo J, Vancanneyt G, Pérez AG, Sanz C, Störmann K, Rosahl S, Sánchez-Serrano JJ. Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J Biol Chem. 1996 Aug 30;271(35):21012-9. [pm id="8702864"]
  85. Heitz T, Bergey DR, Ryan CA. A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol. 1997 Jul;114(3):1085-93. [pm id="9232884"], [pmc id="PMC158398"]
  86. Mariutto M, Duby F, Adam A, Bureau C, Fauconnier ML, Ongena M, Thonart P, Dommes J. The elicitation of a systemic resistance by Pseudomonas putida BTP1 in tomato involves the stimulation of two lipoxygenase isoforms. BMC Plant Biol. 2011 Feb 4;11:29. [pm id="21294872"], [pmc id="PMC3042376"], [cr id="http://dx.doi.org/10.1186/1471-2229-11-29"]
  87. Liu CW, Chang TS, Hsu YK, Wang AZ, Yen HC, Wu YP, Wang CS, Lai CC. Comparative proteomic analysis of early salt stress responsive proteins in roots and leaves of rice. Proteomics. 2014 Aug;14(15):1759-75. Epub 2014 Jul 7. [pm id="24841874"], [cr id="http://dx.doi.org/10.1002/pmic.201300276"]
  88. Fedina E. O., Karimova F. G., Chechetkin I. R., Tarchevsky I. A., Khripach V. A. Contribution of lipoxygenase metabolism to the brassinosteroid signaling pathway. Doklady Biochem. Biophys. 2004;395(1-6):80-83.
  89. VanDoorn A, Kallenbach M, Borquez AA, Baldwin IT, Bonaventure G. Rapid modification of the insect elicitor N-linolenoyl-glutamate via a lipoxygenase-mediated mechanism on Nicotiana attenuata leaves. BMC Plant Biol. 2010 Aug 9;10:164. [pm id="20696061"], [pmc id="PMC3095298"], [cr id="http://dx.doi.org/10.1186/1471-2229-10-164"]
  90. Kallenbach M, Gilardoni PA, Allmann S, Baldwin IT, Bonaventure G. C12 derivatives of the hydroperoxide lyase pathway are produced by product recycling through lipoxygenase-2 in Nicotiana attenuata leaves. New Phytol. 2011 Sep;191(4):1054-68. Epub 2011 May 26. [pm id="21615741"], [cr id="http://dx.doi.org/10.1111/j.1469-8137.2011.03767.x"]
  91. Vicente J, Cascón T, Vicedo B, García-Agustín P, Hamberg M, Castresana C. Role of 9-lipoxygenase and α-dioxygenase oxylipin pathways as modulators of local and systemic defense. Mol Plant. 2012 Jul;5(4):914-28. Epub 2011 Dec 22. [pm id="22199234"], [cr id="http://dx.doi.org/10.1093/mp/ssr105"]
  92. Li L, Li C, Lee GI, Howe GA. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6416-21. Epub 2002 Apr 16. [pm id="11959903"], [pmc id="PMC122963"]
  93. Kazemi-Shahandashti SS, Maali-Amiri R, Zeinali H, Khazaei M, Talei A, Ramezanpour SS. Effect of short-term cold stress on oxidative damage and transcript accumulation of defense-related genes in chickpea seedlings. J Plant Physiol. 2014 Aug 15;171(13):1106-16. Epub 2014 May 2. [pm id="24972025"], [cr id="http://dx.doi.org/10.1016/j.jplph.2014.03.020"]
  94. O’Connor Butler E. S., Mazerik J., Cruff J., Sherwani S., Weis B., Marsh C., Raghava­menon A., Uppu R., Schmid H. O., Parinandi N. Free radicals and antioxidant protocols. New York: Humana Press, 2010; 387-401 p.
  95. Ramirez AM, Yang T, Bouwmeester HJ, Jongsma MA. A trichome-specific linoleate lipoxygenase expressed during pyrethrin biosynthesis in pyrethrum. Lipids. 2013 Oct;48(10):1005-15. Epub 2013 Jul 28. [pm id="23893337"], [cr id="http://dx.doi.org/10.1007/s11745-013-3815-1"]
  96. Cho K, Kim YC, Woo JC, Rakwal R, Agrawal GK, Yoeun S, Han O. Transgenic expression of dual positional maize lipoxygenase-1 leads to the regulation of defense-related signaling molecules and activation of the antioxidative enzyme system in rice. Plant Sci. 2012 Apr;185-186:238-45. Epub 2011 Oct 25. [pm id="22325886"], [cr id="http://dx.doi.org/10.1016/j.plantsci.2011.10.016"]
  97. Vellosillo T, Aguilera V, Marcos R, Bartsch M, Vicente J, Cascón T, Hamberg M, Castresana C. Defense activated by 9-lipoxygenase-derived oxylipins requires specific mitochondrial proteins. Plant Physiol. 2013 Feb;161(2):617-27. Epub 2012 Dec 12. [pm id="23370715"], [pmc id="PMC3561008"], [cr id="http://dx.doi.org/10.1104/pp.112.207514"]
  98. Davoine C, Falletti O, Douki T, Iacazio G, Ennar N, Montillet JL, Triantaphylidès C. Adducts of oxylipin electrophiles to glutathione reflect a 13 specificity of the downstream lipoxygenase pathway in the tobacco hypersensitive response. Plant Physiol. 2006 Apr;140(4):1484-93. Epub 2006 Feb 24. [pm id="16500992"], [pmc id="PMC1435824"]
  99. Chan T., Shimizu Y., Pospíšil P., Nijo N., Fujiwara A., Taninaka Y., Ishikawa T., Hori H., Nanba D., Imai A., Morita N., Yoshioka-Nishimura M., Izumi Y., Yamamoto Y., Kobayashi H., Mizusawa N., Wada H., Yamamoto Y. Quality Control of photosystem II: Lipid peroxidation accelerates photoinhibition under excessive illumination. PLoS ONE. 2012;7(12):e52100.
  100. Meyer D, Herrfurth C, Brodhun F, Feussner I. Degradation of lipoxygenase-derived oxylipins by glyoxysomes from sunflower and cucumber cotyledons. BMC Plant Biol. 2013 Nov 9;13:177. [pm id="24207097"], [pmc id="PMC3831820"], [cr id="http://dx.doi.org/10.1186/1471-2229-13-177"]

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.