Ukr.Biochem.J. 2015; Volume 87, #1, January-February

Modern fluorescent techniques to investigate the mechanisms of lymphocyte activation

G. A. Liubchenko1, R. M. Moriev2, L. S. Kholodna1

1Taras Shevchenko National University of Kyiv, Ukraine;
2Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, Kyiv;
e-mail: gannalb@yahoo.com

Fluorescent proteins are promising tools for studying intracellular signaling processes in lymphocytes. This brief review summarizes fluorescence-based imaging techniques developed in recent years and discusses new methodological advances, such as fluorescent photoswitches, fluorescence recovery after photobleaching (FRAP), fluorescent resonance energy transfer (FRET), fluorescence lifetime imaging microscopy (FLIM), photoactivated localization microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated emission depletion (STED), total internal reflection fluorescence (TIRF) and other techiques. This survey also highlights recent advances in vitro imaging of live tissues, novel applications of flow cytometry with genetically modified fluorescent proteins, and future prospects for the development of new immunological test systems based on fluorescent protein technology.

Ключевые слова: , , ,


Ссылки:

  1. Day RN, Schaufele F. Fluorescent protein tools for studying protein dynamics in living cells: a review. J Biomed Opt. 2008 May-Jun;13(3):031202. Review. [pm id="18601526"], [cr id="http://dx.doi.org/10.1117/1.2939093"]
  2. Chang H, Zhang M, Ji W, Chen J, Zhang Y, Liu B, Lu J, Zhang J, Xu P, Xu T. A unique series of reversibly switchable fluorescent proteins with beneficial properties for various applications. Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4455-60. Epub 2012 Feb 28. [pm id="22375034"], [pmc id="PMC3311367"], [cr id="http://dx.doi.org/10.1073/pnas.1113770109"]
  3. Goedhart J., Stetten D., Noirclerc-Savoye M., Lelimousin M., Joosen L., Hink M. Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93 %: [electronic resource]. Nat. Commun. 2012;3(751):1-9.
  4. Subach FV, Zhang L, Gadella TW, Gurskaya NG, Lukyanov KA, Verkhusha VV. Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol. 2010 Jul 30;17(7):745-55. [pm id="20659687"], [pmc id="PMC2911641"], [cr id="http://dx.doi.org/10.1016/j.chembiol.2010.05.022"]
  5. Mustelin T, Taskén K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J. 2003 Apr 1;371(Pt 1):15-27. Review. [pm id="12485116"], [pmc id="PMC1223257"]
  6. Liubchenko GA, Appleberry HC, Ho­lers VM, Banda NK, Willis VC, Lyubchenko T. Potentially autoreactive naturally occurring transitional T3 B lymphocytes exhibit a unique signaling profile. J. Autoimmun. 2012;38(4):293-303.
  7. Rincón M. MAP-kinase signaling pathways in T cells. Curr Opin Immunol. 2001 Jun;13(3):339-45. Review. [pm id="11406366"]
  8. Kane LP, Lin J, Weiss A. Signal transduction by the TCR for antigen. Curr Opin Immunol. 2000 Jun;12(3):242-9. Review. [pm id="10781399"]
  9. Weiss L, Whitmarsh AJ, Yang DD, Rincón M, Davis RJ, Flavell RA. Regulation of c-Jun NH(2)-terminal kinase (Jnk) gene expression during T cell activation. J Exp Med. 2000 Jan 3;191(1):139-46. [pm id="10620612"], [pmc id="PMC2195805"]
  10. Lyubchenko T, Nielsen JP, Miller SM, Liubchenko GA, Holers VM. Role of initial protein phosphorylation events and localized release-activated calcium influx in B cell antigen receptor signaling. J Leukoc Biol. 2009 Feb;85(2):298-309. Epub 2008 Nov 21. [pm id="19028960"],  [pmc id="PMC2631365"], [cr id="http://dx.doi.org/10.1189/jlb.0308193"]
  11.  Kholodna LS, Gordienko VM, Liub­chenko TA. Morphofunktional properties of lymphoid organs of mice After immunization with staphilococcal antigens. Bullet. Modern Med. 1995:46-49.
  12. Afonin SE, Davydovska TA, Shaturskiy OY Shuba MF, Kholodna LS. Study of membrane activity of staphylococcus protein A on bimolecular lipid membranes. Bullet. Taras Shevchenko Nat. Univ. Kyiv. 1996;(3-4):30-36.
  13. Oleshko HM, Liubchenko HA. [Biochemical components and immunobiological activity of factors of Staphylococci pathogenicity]. Ukr Biokhim Zhurn. (1999). 2006 Jan-Feb;78(1):20-8. Review. Ukrainian. [pm id="17147265"]
  14. Oleshko GM, Liubchenko GA. Immuno­biological properties of surface proteins-adhesines of staphylococcus. Ukr. Biokhim. Zhurn. 2007;79(3):5-12.
  15. Bogdanova OB, Oleshko GM, Morgaien­ko OO, Liubchenko GA, Kholodna LS, Ostapchenko LI. Influence of ionizing radiation on activation of tyrosine phosphatase activity in lymphoid cells After preincubation with cell-bound protein A. Phys. Liv. 2005;13(1):86-90.
  16. Gagnon J, Ramanathan S, Leblanc C, Cloutier A, McDonald PP, Ilangumaran S. IL-6, in synergy with IL-7 or IL-15, stimulates TCR-independent proliferation and functional differentiation of CD8+ T lymphocytes. J Immunol. 2008 Jun 15;180(12):7958-68. [pm id="18523259"]
  17. Jorge C, Christopher A, Hunter NF. ΚB Family of transcription factors: central regulators of innateand. Adapt. Imm. Funct. Clin. Microb. Rev. 2002;15(3):414-429.
  18. Shuai K, Liu B. Regulation of JAK-STAT signalling in the immune system. Nat Rev Immunol. 2003 Nov;3(11):900-11. Review. [pm id="14668806"]
  19. Ryazantseva NV, Novitskii V., Zhukova OB, Biktasova AK, Chechina OE, Sazonova EV. Role of NF-kB, p53, and p21 in the regulation of TNF-α mediated apoptosis of lymphocytes. Bullet. Exp. Biol. Med. 2010;149(1):50-53.
  20. Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol. 2005 Jun;5(6):472-84. Review. [pm id="15928679"]
  21. Stepanenko OV, Kuznetsova IM, Kuzne­tsova IM. Denaturation of proteins with beta-barrel topology induced by guanidine hydrochloride. Spectrosc. Int. J. 2010;24:367-373.
  22. Maino VC, Suni MA, Ruitenberg JJ, Smith-McCollum RM. 1995. FastImmune Assay System. A rapid and comprehensive system for assessing lymphocyte function by flow cytometry. Becton Dickinson, Immunocytometry Systems, 1995. 7 p.
  23. Liubchenko GA, Ostapchenko LI. Immuno­biological signaling in response to S. aureus Extracellular adherence protein (Eap). J. Immunol. (Meeting Abstract Supplement). 2010;184(40):27.
  24. Gascoigne NR, Ampudia J, Clamme JP, Fu G, Lotz C, Mallaun M, Niederberger N, Palmer E, Rybakin V, Yachi PP, Zal T. Visualizing intermolecular interactions in T cells. Curr Top Microbiol Immunol. 2009;334:31-46. Review. [pm id="19521680"], [pmc id="PMC3079427"], [cr id="http://dx.doi.org/10.1007/978-3-540-93864-4_2"]
  25. Piatkevich KD, Verkhusha VV. Guide to red fluorescent proteins and biosensors for flow cytometry. Methods Cell Biol. 2011;102:431-61. [pm id="21704849"], [pmc id="PMC3987785"], [cr id="http://dx.doi.org/10.1016/B978-0-12-374912-3.00017-1"]
  26. Balagopalan L, Sherman E, Barr VA, Samelson LE. Imaging techniques for assaying lymphocyte activation in action. Nat Rev Immunol. 2011 Jan;11(1):21-33. Review. [pm id="21179118"], [pmc id="PMC3403683"], [cr id="http://dx.doi.org/10.1038/nri2903"]
  27. Liubchenko G, Appleberry H, Striebich C, Franklin K, Derber L, Holers V, Lyubchenko T. Rheumatoid arthritis is associated with signaling alterations in naturally occurring auto reactive B-lymphocytes. J. Autoimmunity. 2013;40:111-121.
  28. Kaizuka Y, Douglass AD, Varma R, Dustin ML, Vale RD. Mechanisms for segregating T cell receptor and adhesion molecules during immunological synapse formation in Jurkat T cells. Proc Natl Acad Sci U S A. 2007 Dec 18;104(51):20296-301. Epub 2007 Dec 12. [pm id="18077330"], [pmc id="PMC2154425"]
  29. Kress A, Ferrand P, Rigneault H, Trombik T, He HT, Marguet D, Brasselet S. Probing orientational behavior of MHC class I protein and lipid probes in cell membranes by fluorescence polarization-resolved imaging. Biophys J. 2011 Jul 20;101(2):468-76. [pm id="21767500"], [pmc id="PMC3136793"], [cr id="http://dx.doi.org/10.1016/j.bpj.2011.05.021"]
  30. Zhong H. Photoactivated localization micro­scopy (PALM): an optical technique for achieving ~ 10-nm resolution adapted from imaging: a laboratory manual. Cold Spring Harb Protoc, 2010. 91 p.
  31. Rego EH, Shao L, Macklin JJ, Winoto L, Johansson GA, Kamps-Hughes N, Davidson MW, Gustafsson MG. Nonlinear structured-illumination microscopy with a photoswitchable protein reveals cellular structures at 50-nm resolution. Proc Natl Acad Sci U S A. 2012 Jan 17;109(3):E135-43. Epub 2011 Dec 12. [pm id="22160683"], [pmc id="PMC3271870"], [cr id="http://dx.doi.org/10.1073/pnas.1107547108"]
  32. Brown A., Hategan A., Safer D., Goldman Y., Discher D. Cross-correlated TIRF. FPM reveals asymmetric distribution of forcegenerating heads along self-assembled "synthetic" myosin filaments. Bioph. J. 2009;96:1952-1960.
  33. Williamson DJ, Owen DM, Rossy J, Magenau A, Wehrmann M, Gooding JJ. Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events. Nat. Immunol. 2011;12(7):655-662.
  34. Subach FV, Patterson GH, Renz M, Lippincott-Schwartz J, Verkhusha VV. Bright monomeric photoactivatable red fluorescent protein for two-color super-resolution sptPALM of live cells. J Am Chem Soc. 2010 May 12;132(18):6481-91. [pm id="20394363"], [pmc id="PMC2866019"], [cr id="http://dx.doi.org/10.1021/ja100906g"]
  35. Stepanenko OV, Stepanenko OV, Shcher­bakova DM, Kuznetsova IM, Turoverov KK, Verkhusha VV. Modern fluorescent proteins: from chromophore formation to novel intracellular applications. Biotechniques. 2011;51(5):313-314.
  36. Coelho M, Maghelli N, Tolić-Nørrelykke IM. Single-molecule imaging in vivo: the dancing building blocks of the cell. Integr Biol (Camb). 2013 May;5(5):748-58. Review. [pm id="23525260"], [cr id="http://dx.doi.org/10.1039/c3ib40018b"]
  37. Beltman JB, Marée AF, Lynch JN, Miller MJ, de Boer RJ. Lymph node topology dictates T cell migration behavior. J Exp Med. 2007 Apr 16;204(4):771-80. Epub 2007 Mar 26. [pm id="17389236"], [pmc id="PMC2118562"]
  38. Brown AC, Oddos S, Dobbie IM, Alakoskela JM, Parton RM, Eissmann P, Neil MA, Dunsby C, French PM, Davis I, Davis DM. Remodelling of cortical actin where lytic granules dock at natural killer cell immune synapses revealed by super-resolution microscopy. PLoS Biol. 2011 Sep;9(9):e1001152. Epub 2011 Sep 13. Erratum in: PLoS Biol. 2012 Aug;10(8). doi: 10.1371/annotation/cfe6f47e-8c81-4ef0-bdf3-8841cbe40b93. [pm id="21931537"], [pmc id="PMC3172219"], [cr id="http://dx.doi.org/10.1371/journal.pbio.1001152"]
  39. Torres AJ, Wu M, Holowka D, Baird B. Nanobiotechnology and cell biology: micro- and nanofabricated surfaces to investigate receptor-mediated signaling. Annu Rev Biophys. 2008;37:265-88. Review. [pm id="18573082"], [cr id="http://dx.doi.org/10.1146/annurev.biophys.36.040306.132651"]
  40. Hsu CJ, Hsieh WT, Waldman A, Clarke F, Huseby ES, Burkhardt JK, Baumgart T. Ligand mobility modulates immunological synapse formation and T cell activation. PLoS One. 2012;7(2):e32398. Epub 2012 Feb 22. [pm id="22384241"], [pmc id="PMC3284572"], [cr id="http://dx.doi.org/10.1371/journal.pone.0032398"]
  41. Piatkevich KD, Malashkevich VN, Almo SC, Verkhusha VV. Engineering ESPT pathways based on structural analysis of LSSmKate red fluorescent proteins with large Stokes shift. J Am Chem Soc. 2010 Aug 11;132(31):10762-70. [pm id="20681709"], [pmc id="PMC2919691"], [cr id="http://dx.doi.org/10.1021/ja101974k"]
  42. Subach FV, Zhang L, Gadella TW, Gurskaya NG, Lukyanov KA, Verkhusha VV. Red fluorescent protein with reversibly photoswitchable absorbance for photochromic FRET. Chem Biol. 2010 Jul 30;17(7):745-55. [pm id="20659687"], [pmc id="PMC2911641"], [cr id="http://dx.doi.org/10.1016/j.chembiol.2010.05.022"]
  43. Morozova K, Piatkevich K, Gould T, Zhang J, Bewersdorf J, Verkhusha V. Far-Red fluorescent protein excitable with red lasers for flow cytometry and super-resolution STED nanoscopy. Biophys. J. 2010;99:13-15.
  44. Wu B, Piatkevich KD, Lionnet T, Singer RH, Verkhusha VV. Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr Opin Cell Biol. 2011 Jun;23(3):310-7. Epub 2011 Jan 15. Review.  [pm id="21242078"], [pmc id="PMC3143818"], [cr id="http://dx.doi.org/10.1016/j.ceb.2010.12.004"]
  45. Hickey MJ, Kubes P. Intravascular immunity: the host-pathogen encounter in blood vessels. Nat Rev Immunol. 2009 May;9(5):364-75. Review. [pm id="19390567"], [cr id="http://dx.doi.org/10.1038/nri2532"]
  46. Shcherbakova DM, Subach OM, Verkhusha VV. Red fluorescent proteins: advanced imaging applications and future design. Angew Chem Int Ed Engl. 2012 Oct 22;51(43):10724-38. Epub 2012 Jul 31. Review.  [pm id="22851529"], [cr id=" http://dx.doi.org/10.1002/anie.201200408"]
  47. Kawano H, Kogure T, Abe Y, Mizuno H, Miyawaki A. Two-photon dual-color imaging using fluorescent proteins. Nat Methods. 2008 May;5(5):373-4. [pm id="18446153"], [cr id="http://dx.doi.org/10.1038/nmeth0508-373"]
  48. Huppa JB, Davis MM. T-cell-antigen recognition and the immunological synapse. Nat Rev Immunol. 2003 Dec;3(12):973-83. [pm id="14647479"]
  49. Gunewardene MS, Subach FV, Gould TJ, Penoncello GP, Gudheti MV, Verkhusha VV, Hess ST. Superresolution imaging of multiple fluorescent proteins with highly overlapping emission spectra in living cells. Biophys J. 2011 Sep 21;101(6):1522-8. Epub 2011 Sep 20.  [pm id="21943434"], [pmc id="PMC3177078"], [cr id="http://dx.doi.org/10.1016/j.bpj.2011.07.049"]
  50. Bousso P, Bhakta NR, Lewis RS, Robey E. Dynamics of thymocyte-stromal cell interactions visualized by two-photon microscopy. Science. 2002 Jun 7;296 (5574):1876-80.  [pm id="12052962"]
  51. Schaer DA, Li Y, Merghoub T, Rizzuto GA, Shemesh A, Cohen AD, Li Y, Avogadri F, Toledo-Crow R, Houghton AN, Wolchok JD. Detection of intra-tumor self antigen recognition during melanoma tumor progression in mice using advanced multimode confocal/two photon microscope. PLoS One. 2011;6(6):e21214. Epub 2011 Jun 22.  [pm id="21731676"], [pmc id="PMC3120835"], [cr id="http://dx.doi.org/10.1371/journal.pone.0021214"]
  52. Morozova KS, Piatkevich KD, Gould TJ, Zhang J, Bewersdorf J, Verkhusha VV. Far-red fluorescent protein excitable with red lasers for flow cytometry and superresolution STED nanoscopy. Biophys J. 2010 Jul 21;99(2):L13-5.  [pm id="20643047"], [pmc id="PMC2905082"], [cr id=" http://dx.doi.org/10.1016/j.bpj.2010.04.025"]
  53. Yoshizaki H, Mochizuki N, Gotoh Y, Matsuda M. Akt-PDK1 complex mediates epidermal growth factor-induced membrane protrusion through Ral activation. Mol Biol Cell. 2007 Jan;18(1):119-28. Epub 2006 Nov 1.  [pm id="17079732"]; [pmc id="PMC1751317"]
  54. Schmid JA, Birbach A. Fluorescent proteins and fluorescence resonance energy transfer (FRET) as tools in signaling research. Thromb Haemost. 2007 Mar;97(3):378-84. Review.  [pm id="17334504"]
  55. Gajendran N, Vanhecke D, Brinkmann V, Kaufmann SH. Identifying activated T cells in reconstituted RAG deficient mice using retrovirally transduced Pax5 deficient pro-B cells. PLoS One. 2009;4(4):e5115. Epub 2009 Apr 2.  [pm id="19340306"], [pmc id="PMC2660435"], [cr id="http://dx.doi.org/10.1371/journal.pone.0005115"]
  56. Peacock RW, Wang CL. A genetic reporter system to gauge cell proliferation rate. Biotechnol Bioeng. 2011 Sep;108(9):2003-10. Epub 2011 Apr 27. [pm id="21495014"], [cr id="http://dx.doi.org/10.1002/bit.23163"]
  57. Wang L., Carnegie G. K. Flow cytometric analysis of bimolecular fluorescence comple­mentation: a high throughput quantitative method to study protein-protein interaction. J. Vis. Exp. 2013:78.
  58. Ohmichi Y, Hirakawa J, Imai Y, Fukuda M, Kawashima H. Essential role of peripheral node addressin in lymphocyte homing to nasal-associated lymphoid tissues and allergic immune responses. J Exp Med. 2011 May 9;208(5):1015-25. Epub 2011 Apr 25.  [pm id="21518796"], [pmc id="PMC3092357"], [cr id="http://dx.doi.org/10.1084/jem.20101786"]
  59. Aoki K., Kiyokawa E., Nakamura T., Matsuda M. Visualization of growth signal transduction cascades in living cells with genetically encoded probes based on Forster resonance energy transfer. Phil. Trans. R. Soc. B. 2008;363:2143-2151.
  60. Liubchenko G., Appleberry H., Striebich C., Franklin K., Derber L., Holers V. Rheumatoid arthritis is associated with signaling alterations in naturally occurring autoreactive B-lymphocytes. J. Autoimm. 2012:1-11.
  61. Mues M, Bartholomäus I, Thestrup T, Griesbeck O, Wekerle H, Kawakami N, Krishnamoorthy G. Real-time in vivo analysis of T cell activation in the central nervous system using a genetically encoded calcium indicator. Nat Med. 2013 Jun;19(6):778-83. Epub 2013 May 12.  [pm id="23685843"], [cr id="http://dx.doi.org/10.1038/nm.3180"]
  62. Kriz A, Schmid K, Baumgartner N, Ziegler U, Berger I, Ballmer-Hofer K, Berger P. A plasmid-based multigene expression system for mammalian cells. Nat Commun. 2010 Nov 16;1:120.  [pm id="21081918"]
  63. Drobizhev M, Makarov NS, Tillo SE, Hughes TE, Rebane A. Two-photon absorption properties of fluorescent proteins. Nat Methods. 2011 May;8(5):393-9. Epub 2011 Apr 28. Review.  [pm id="21527931"], [cr id=" http://dx.doi.org/10.1038/nmeth.1596"]
  64. Bückers J, Wildanger D, Vicidomini G, Kastrup L, Hell SW. Simultaneous multi-lifetime multi-color STED imaging for colocalization analyses. Opt Express. 2011 Feb 14;19(4):3130-43.  [pm id="21369135"], [cr id=" http://dx.doi.org/10.1364/OE.19.003130"]
  65. Sobhy MA, Elshenawy MM, Takahashi M, Whitman BH, Walter NG, Hamdan SM. Versatile single-molecule multi-color excitation and detection fluorescence setup for studying biomolecular dynamics. Rev Sci Instrum. 2011 Nov;82(11):113702.  [pm id="22128979"], [cr id="http://dx.doi.org/10.1063/1.3657153"]
  66. Wu B, Piatkevich KD, Lionnet T, Singer RH, Verkhusha VV. Modern fluorescent proteins and imaging technologies to study gene expression, nuclear localization, and dynamics. Curr Opin Cell Biol. 2011 Jun;23(3):310-7. Epub 2011 Jan 15. Review. [pm id="21242078"], [pmc id="PMC3143818"], [cr id="http://dx.doi.org/10.1016/j.ceb.2010.12.004"]
  67. Kawamoto T, Shimizu M. A method for preparing 2- to 50-micron-thick fresh-frozen sections of large samples and undecalcified hard tissues. Histochem Cell Biol. 2000 May;113(5):331-9.  [pm id="10883392"]
  68. Walch A, Rauser S, Deininger SO, Höfler H. MALDI imaging mass spectrometry for direct tissue analysis: a new frontier for molecular histology. Histochem Cell Biol. 2008 Sep;130(3):421-34. Epub 2008 Jul 11. Review.  [pm id="18618129"], [pmc id="PMC2522327"], [cr id="http://dx.doi.org/10.1007/s00418-008-0469-9"]
  69. Balagopalan L, Sherman E, Barr VA, Samelson LE. Imaging techniques for assaying lymphocyte activation in action. Nat Rev Immunol. 2011 Jan;11(1):21-33. Review.  [pm id="21179118"], [pmc id="PMC3403683"], [cr id="http://dx.doi.org/10.1038/nri2903"]
  70. Freeley M, Bakos G, Davies A, Kelleher D, Long A, Dunican DJ. A high-content analysis toolbox permits dissection of diverse signaling pathways for T lymphocyte polarization. J Biomol Screen. 2010 Jun;15(5):541-55. Epub 2010 May 10.  [pm id="20460253"], [cr id="http://dx.doi.org/10.1177/1087057110369703"]

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.