Ukr.Biochem.J. 2015; Volume 87, #2, March-April

Peculiarities of glucose and glycerol metabolism in Nocardia vaccinii IMB B-7405

T. P. Pirog1,2, T. A. Shevchuk1, K. A. Beregova2, N. V. Kudrya2

1Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Kiyv;
2National University of Food Technologies, Kiyv, Ukraine;

It has been established that in cells of Nocardia vaccinii IMB B-7405 (surfactant producer) glucose catabolism is performed through pentose phosphate cycle as well as through gluconate (activi­ty of NAD+-dependent glucose-6- phosphate dehydrogenase and FAD+-dependent glucose dehydrogenase 835 ± 41 and 698 ± 35 nmol∙min-1∙mg-1 of protein respectively). 6-Phosphogluconate formed in the gluconokinase reaction is involved in the pentose phosphate cycle (activity of constitutive NADP+-dependent 6-phosphogluconate dehydrogenase 357 ± 17 nmol∙min-1∙mg-1 of protein). Glyce­rol catabolism to dihydroxyacetonephosphate (the intermediate of glycolysis) may be performed in two ways: through glycerol-3-phosphate (glycerol kinase activity 244 ± 12 nmol∙min-1∙mg-1 of protein) and through dihydroxyacetone. Replenishment of the C4-dicarboxylic acids pool in N. vaccinii IMV B-7405 grown on glucose and glycerol occurs in the phosphoenolpyruvate(PEP)carboxylase reaction (714–803 nmol∙min-1∙mg-1 of protein). 2-Oxoglutara­te was involved in tricarboxylic acid cycle by alternate pathway with the participation of 2-oxoglutarate synthase.
The observed activity of both key enzymes of gluconeogenesis (PEP- carboxykinase and PEP-synthase), trehalose phosphate synthase and NADP+-dependent glutamate dehydrogenase confirmed the ability of IMV B-7405 strain to the synthesis of surface active glyco- and aminolipids, respectively.

Ключевые слова: , , , , ,


  1. Marchant R, Banat IM. Biosurfactants: a sustainable replacement for chemical surfactants? Biotechnol Lett. 2012 Sep;34(9):1597-605. Epub 2012 May 22. Review. [pm id="22618240"], [cr id=""]
  2. Pirog T. P., Shulyakova M. A., Shevchuk T. A. Mixed substrates in environment and biotechnological processes. Biotechnologia Acta. 2013;6(6):28-44. (In Ukrainian).
  3. Kudrya N., Pirog T. The specifics of surfactants synthesis during Nocardia vaccinii ІMV B-7405 cultivation on mixed substrates. Ukr. Food J. 2013;2(2):203-209. (In Ukrainian).
  4. Pidhorskyy V., Iutinska G., Pirog T. Intensification of microbial synthesis technologies. K.: Nauk. Dumka, 2010; 327 p. (In Ukrainian).
  5. Pirog T. P., Konon A. D., Shevchuk T. A., Bilets I. V. Intensification of biosurfactant synthesis by Acinetobacter calcoaceticus IMV B-7241 on a hexadecane–glycerol mixture. Microbiology. 2012;81(5):565-572.
  6. Pyroh TP, Kuz'mins'ka IuV, Kovalenko MO. Metabolism of C2-C6-substrates under mixotrophic growth of Acinetobacter sp. B-7005 and B-7005 (1HG) strains]. Ukr Biokhim Zhurn (1999). 2004 Jan-Feb;76(1):33-8. Ukrainian. [pm id="15909415"]
  7. Milburn CC, Lamble HJ, Theodossis A, Bull SD, Hough DW, Danson MJ, Taylor GL. The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Biol Chem. 2006 May 26;281(21):14796-804. Epub 2006 Mar 23. [pm id="16556607"]
  8. Nishiya Y, Tamura N, Tamura T. Analysis of bacterial glucose dehydrogenase homologs from thermoacidophilic archaeon Thermoplasma acidophilum: finding and characterization of aldohexose dehydrogenase. Biosci Biotechnol Biochem. 2004 Dec;68(12):2451-6. [pm id="15618614"]
  9. Avigad G., Alroy Y., Englard S. Purification and properties of a nicotinamide adenine dinucleotide phosphate-linked aldohexose dehydrogeanse from Gluconobacter cerinus. J. Biol. Chem. 1968;243(8):1936-1941.
  10. Andreeva IG, Golubeva LI, Kuvaeva TM, Gak ER, Katashkina JI, Mashko SV. Identification of Pantoea ananatis gene encoding membrane pyrroloquinoline quinone (PQQ)-dependent glucose dehydrogenase and pqqABCDEF operon essential for PQQ biosynthesis. FEMS Microbiol Lett. 2011 May;318(1):55-60. Epub 2011 Mar 2. [pm id="21306430"], [cr id=""]
  11. Sygmund C, Staudigl P, Klausberger M, Pinotsis N, Djinović-Carugo K, Gorton L, Haltrich D, Ludwig R. Heterologous overexpression of Glomerella cingulata FAD-dependent glucose dehydrogenase in Escherichia coli and Pichia pastoris. Microb Cell Fact. 2011 Dec 12;10:106. [pm id="22151971"], [pmc id="PMC3252255"], [cr id=""]
  12. Chiyonobu T., Shinagawa E., Adachi O., Ameyama M. Purification, crystallization and properties of 2-ketogluconate reductase from Acetobacter rancens. Agric. Biol. Chem. 1976;40(1):175-184.
  13. Yum DY, Lee YP, Pan JG. Cloning and expression of a gene cluster encoding three subunits of membrane-bound gluconate dehydrogenase from Erwinia cypripedii ATCC 29267 in Escherichia coli. J Bacteriol. 1997 Nov;179(21):6566-72. [pm id="9352901"], [pmc id="PMC179580"]
  14. Izu H, Adachi O, Yamada M. Purification and characterization of the Escherichia coli thermoresistant glucokinase encoded by the gntK gene. FEBS Lett. 1996 Sep 23;394(1):14-6. [pm id="8925917"]
  15. Bridges RB, Palumbo MP, Wittenberger CL. Purification and properties of an NADP-specific 6-phosphogluconate dehydrogenase from Streptococcus faecalis. J Biol Chem. 1975 Aug 10;250(15):6093-100. [pm id="238996"]
  16. Stournaras C, Maurer P, Kurz G. 6-phospho-D-gluconate dehydrogenase from Pseudomonas fluorescens. Properties and subunit structure. Eur J Biochem. 1983 Feb 1;130(2):391-6. [pm id="6402366"]
  17. Ohara H, Uchida K, Yahata M, Kondo H. NAD-specific 6-phosphogluconate dehydrogenase in lactic acid bacteria. Biosci Biotechnol Biochem. 1996 Apr;60(4):692-3. [pm id="8829540"]
  18. Olavarría K., Valdés D., Cabrera R. The cofactor preference of glucose-6-phosphate dehydrogenase from Escherichia coli − modeling the physiological production of reduced cofactors. FEBS J. 2012;279(13):2296-2309. doi: 10.1111. j.1742-4658.2012.08610.x.
  19. Lee W. T., Levy H. R. Lysine-21 of Leuconostoc mesenteroides glucose 6-phosphate dehydro­genase participates in substrate binding through charge-charge interactio. Protein Sci. 1992;1(3):329-334.
  20. Pirog T. P., Korzh Yu. V., Shevchuk T. A., Tarasenko D. O. Peculiarities of C2-metabolism ans intensification of the synthesis of surface active substances in Rhodococcus erythropolis EK-1 grown in ethanol. Microbiology. 2008;77(6):665-673.
  21. Yun NR, Arai H, Ishii M, Igarashi Y. The genes for anabolic 2-oxoglutarate: ferredoxin oxidoreductase from Hydrogenobacter thermophilus TK-6. Biochem Biophys Res Commun. 2001 Mar 30;282(2):589-94. [pm id="11401501"]
  22. Pan YT, Carroll JD, Elbein AD. Trehalose-phosphate synthase of Mycobacterium tuberculosis. Cloning, expression and properties of the recombinant enzyme. Eur J Biochem. 2002 Dec;269(24):6091-100. [pm id="12473104"]
  23. Milburn CC, Lamble HJ, Theodossis A, Bull SD, Hough DW, Danson MJ, Taylor GL. The structural basis of substrate promiscuity in glucose dehydrogenase from the hyperthermophilic archaeon Sulfolobus solfataricus. J Biol Chem. 2006 May 26;281(21):14796-804. Epub 2006 Mar 23. [pm id="16556607"]
  24. Buch A., Archana G., Naresh Kumar G. Metabolic channeling of glucose towards gluconate in phosphate-solubilizing Pseudomonas aeruginosa P4 under phosphorus deficiency. Res. Microbiol. 2008;159(9−10):635-642.
  25. Yamaoka H., Yamashita Y., Ferri S., Sode K. Site directed mutagenesis studies of FAD-dependent glucose dehydrogenase catalytic subunit of Burkholderia cepacia. Biotechnol. Lett. 2008;30(11):1967-1972. doi: 10.1007. s10529-008-9777-3.
  26. Yamashita Y., Ferri S., Huynh M. L., Shimizu H., Yamaoka H., Sode K. Direct electron transfer type disposable sensor strip for glucose sensing employing an engineered FAD glucose dehydrogenase. Enzyme Microb. Technol. 2013;52(2):123-128. doi: 10.1016. j.enzmictec.2012.11.002.
  27. Fapyane D, Lee SJ, Kang SH, Lim DH, Cho KK, Nam TH, Ahn JP, Ahn JH, Kim SW, Chang IS. High performance enzyme fuel cells using a genetically expressed FAD-dependent glucose dehydrogenase α-subunit of Burkholderia cepacia immobilized in a carbon nanotube electrode for low glucose conditions. Phys Chem Chem Phys. 2013 Jun 28;15(24):9508-12. [pm id="23695009"], [cr id=""]
  28. Matsushita K., Ohno Y., Shinagawa E., Adachi O., Ameyama M. Membrane-bound D-glucose dehydrogenase from Pseudomonas sp.: solubilization, purification and characterization. Agric. Biol. Chem. 1980;44(7):1505-1512.
  29. Hauge JG. Glucose dehydrogenase of Bacterium anitratum: an enzyme with a novel prosthetic group. J Biol Chem. 1964 Nov;239:3630-9. [pm id="14257587"]
  30. Lessie TG, Phibbs PV Jr. Alternative pathways of carbohydrate utilization in pseudomonads. Annu Rev Microbiol. 1984;38:359-88. Review. [pm id="6388497"]
  31. Wang IN, Dykhuizen DE. Variation of enzyme activities at a branched pathway involved in the utilization of gluconate in Escherichia coli. Evolution. 2001 May;55(5):897-908. [pm id="11430650"]
  32. Aoshima M. Novel enzyme reactions related to the tricarboxylic acid cycle: phylogenetic/functional implications and biotechnological applications. Appl Microbiol Biotechnol. 2007 May;75(2):249-55. Epub 2007 Feb 28. Review. [pm id="17333169"]
  33. Yamamoto M, Ikeda T, Arai H, Ishii M, Igarashi Y. Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles. 2010 Jan;14(1):79-85. Epub 2009 Nov 6. [pm id="19894084"], [cr id=""]
  34. Pirog T., Gritsenko N., Khomyak D., Konon A., Antonuk S. Optimization of synthesis of biosurfactants of Nocardia vaccinii K-8 under bioconversion of biodiesel production waste. Microbiol. J. 2011;73(4):15-24. (In Russian).

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.