Ukr.Biochem.J. 2015; Volume 87, #2, March-April

The effect of chlorination of nucleotide bases on the conformational properties of thymidine monophosphate

T. M. Mukhina, T. Yu. Nikolaienko

Taras Shevchenko National University of Kyiv, Ukraine;
e-mail: MukhinaTanyaM@gmail.com; tim_mail@ukr.net

Recent studies on Escherichia coli bacteria cultivation, in which DNA thymine was replaced with 5-chlorouracil have refreshed the problem of understanding the changes to physical properties of DNA monomers resultant from chemical modifications. These studies have shown that the replacement did not affect the normal activities and division of the bacteria, but has significantly reduced its life span. In this paper a comparative analysis was carried out by the methods of computational experiment of a set of 687 possible conformers of natural monomeric DNA unit (2′-deoxyribonucleotide thymidine monophosphate) and 660 conformers of 5-chloro-2′-deoxyuridine monophosphate – a similar molecules in which the natural nitrogenous base thymine is substituted with 5-chlorouracil. Structures of stable conformers of the modified deoxyribonucleotide have been obtained and physical factors, which determine their variation from the conformers of the unmodified molecule have been analyzed. A comparative analysis of the elastic properties of conformers­ of investigated molecules and non-covalent interactions present in them was conducted. The results can be used for planning experiments on synthesis of artificial DNA suitable for incorporation into living organisms.

Ключевые слова: , , , , ,


Ссылки:

  1. Marliere P., Patrouix J., Döring V., Herdewijn P., Tricot S., Cruveiller S., Bouzon M., Mutzel R. Chemical Evolution of a Bacterium’s Genome. Andgew. Chem. Int. Ed. 2011;50(31):7109-7114. [pm id="21710668"], [cr id="http://dx.doi.org/10.1002/anie.201100535"]
  2. Nikolaienko T. Yu., Bulavin L. A., Hovorun D. M. Quantum-mechanical conformational analysis of the 5′-thymidilic acid molecule. Ukr. Biokhim. Zhurn. 2010;82(6):76-86. (In Ukrainian). [pm id="21805865"]
  3. Voiteshenko I. S., Zhurakivsky R. O., Bu­lavin L. A., Hovorun D. M. The simplest molecular model of 2′-deoxyribopolinucleotides sugar-phosphate backbone: quantum-chemical adequacy check. Ukr. Biokhim. Zhurn. 2011;83(3):106-112. (In Ukrainian). [pm id="21888061"]
  4. Voiteshenko I. S., Zhurakivsky R. O., Bulavin L. A., Hovorun D. M. Complete conformation analysis of a low-molecular electroneutral model of sugar-phosphate DNA chain. Rep. Nat. Acad. Sci. Ukraine. 2011;(6):188-196. (In Ukrainian).
  5. Nikolaienko TY, Bulavin LA, Hovorun DM. How flexible are DNA constituents? The quantum-mechanical study. J Biomol Struct Dyn. 2011 Dec;29(3):563-75. [pm id="22066541"]
  6. Nikolaienko T. Yu., Bulavin L. A., Hovorun D. M. Structural flexibility of canonical 2′-deoxyribonucleotides in DNA-like conformations. Ukr. Biokhim. Zhurn. 2011;83(5):48-58. (In Ukrainian). [pm id="22276428"]
  7. Nikolaienko T. Yu., Bulavin L. A., Hovorun D. M. The 5′-deoxyadenylic acid molecule confor­mational capacity: quantum-mechanical investigation using density functional theory (DFT). Ukr. Biokhim. Zhurn. 2011;83(4):16-28. (In Ukrainian). [pjm id="22145406"]
  8. Nikolaienko T. Yu., Bulavin L. A., Hovorun D. M. Conformational capacity of 5′-deoxyguanylic acid molecule investigated by quantum-mechanical methods. Biopolym. Cell. 2011;27(4):291-299. (In Ukrainian).
  9. Nikolaienko T. Yu., Hovorun D. M. Quantum-mechanical conformational analysis of 2-deoxycytidilic acid molecule — the DNA structural unit. Rep. Nat. Acad. Sci. Ukraine. 2010;(9):173-184. (I Ukrainian).
  10. Saenger W. Principles of nucleic acid structure. Springer-Verlag, 1984; 556 p.
  11. Gaussian 03, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Wallingford CT, 2004.
  12. Bader R. F. Atoms in Molecules: A Quantum Theory. Oxford University Press, 1994; 458 p.
  13. AIMAll (Version 08.11.29), Todd A. Keith, TK Gristmill Software, Overland Park KS, USA, 2014 (aim.tkgristmill.com).
  14. Nikolaienko TY, Bulavin LA, Hovorun DM. Structural flexibility of DNA-like conformers of canonical 2'-deoxyribonucleosides. Phys Chem Chem Phys. 2012 Nov 28;14(44):15554-61. Epub 2012 Oct 17. [pm id="23073508"], [cr id="http://dx.doi.org/10.1039/c2cp43120c"]
  15. Nikolaienko T. Yu., Bulavin L. A., Hovorun D. M. Structural flexibility of canonical 2′-deoxyribonucleotides in DNA-like conformations. Ukr. Biokhim. Zhurn. 2011;83(5):48-58. (In Ukrainian). [pm id="22276428"]
  16. Nikolaienko T. Yu., Voiteshenko I. S., Bulavin L. A., Hovorun D. M. Determination of rigidity coefficients for cooperative degrees of freedom in biological molecules. Bulletin of Kyiv University. Series: Physics & Mathematics, 2010;(2):279-282. (In Ukrainian).
  17. Boryskina O. P., Tkachenko M. Yu., Shestopa­lova A. V. Variability of DNA structure and protein-nucleic acid reconginition. Biopolym. Cell. 2010; (5):360-372. (In Ukrainian).
  18. Wang AH, Quigley GJ, Kolpak FJ, Crawford JL, van Boom JH, van der Marel G, Rich A. Molecular structure of a left-handed double helical DNA fragment at atomic resolution. Nature. 1979 Dec 13;282(5740):680-6. [pm id="514347"], [cr id="http://dx.doi.org/10.1038/282680a0"]
  19. Svozil D, Kalina J, Omelka M, Schneider B. DNA conformations and their sequence preferences. Nucleic Acids Res. 2008 Jun;36(11):3690-706. Epub 2008 May 13.  [pm id="18477633; [pmc id="PMC2441783"], [cr id="http://dx.doi.org/10.1093/nar/gkn260"]
  20. Berman H. M. Crystal studies of B-DNA: The answers and the questions. Biopolymers. 1997;44(1):23-44.  [pm id="9097732"], [cr id="http://dx.doi.org/10.1002/(sici)1097-0282(1997)44:1<23::aid-bip3>3.0.co;2-1"]
  21. Schneide B., Neidle St., Berman H. M. Conformations of the Sugar–Phosphate Backbone in Helical DNA Crystal Structures. Biopolymers. 1997;42:113-124.
  22. Gessner RV, Frederick CA, Quigley GJ, Rich A, Wang AH. The molecular structure of the left-handed Z-DNA double helix at 1.0-A atomic resolution. Geometry, conformation, and ionic interactions of d(CGCGCG). J Biol Chem. 1989 May 15;264(14):7921-35. [pm id="2722771"]
  23. Bulavin L. A., Hovorun D. M., Nikolaienko T. Yu. The structure of DNA monomers. Kiev: Naukova Dumka, 2014; 205 p. (In Ukrainian).
 

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.