Ukr.Biochem.J. 2015; Volume 87, #1, January-February

The influence of iron ions on ATP-hydrolases activity of cell membranes of rat colon smooth muscle and kidney

A. A. Kaplia

Palladin Institute of Biochemistry, National Academy of Sciences of Ukraine, Kyiv;
e-mail: kaplya@biochem.kiev.ua

To elucidate the specific features of the АТР- hydrolases structural resistance in the membrane under the action of the prooxidants: Fe2+ and hydrogen peroxide, and N-ethylmaleimide (NEM)  the colonic smooth muscle (CSM) Na+,K+-AТРase activity was compared with activities of the corresponding Mg2+-АТР-hydrolase and ATP-ases from kidney medullar layer of rats. The inhibition study of the CSM Na+,K+-AТРase by divalent iron shows the decrease of the activity by 30% at 0.1 µM FeSO4 and in the range of 0.1-10 µM – to 45% of residual activity. When comparing with kidney enzyme (represents exclusively α1-isozyme) the CSM Na+,K+-AТРase sensitivity to Fe2+ is reliably higher at its submicromolar concentration. CSM Mg2+-АТРase is much more resistant to iron ions effect, than kidney one. However for two tissues Mg2+-АТРase activi­ty is always more resistant as compared with corresponding Na+,K+-AТРase activity. Against 1 mM EGTA Na+,K+-AТРase and Mg2+-АТРase activities of GMOK and kidneys are equally insensitive to effect of hydrogen peroxide in concentration up to 1 mM. But in the presence of 20 µM FeSO4 in the concentration range of 1 nМ – 1 mM of Н2О2 the Na+,K+-AТРase is inhibited to greater extent, than Mg2+-АТРase activity. NEM sensitivity of the two АТР-hydrolase systems corresponds to prooxidant sensitivity that indicates the distinct importance of SH-groups for their functioning.

It is concluded that Na+,K+-AТРase can serve as a marker of membrane sensitivity to oxidation, Mg2+-АТРase is resistant to oxidation and can be considered as criterion of the oxidation resistance when comparing  membrane enzyme complexes, especially in GMOK.

Ключевые слова: , , , , , , , ,


Ссылки:

  1. Baraboy V. A., Sutkovoy D. A. Oxidative and antioxidative homeostasis in norm and pathology. Kiev: Chernobylinform, 1997. 420 p. (In Russian).
  2.  Lubianova I. P. Modern concepts about the methabolism of iron from the position of the occupational pathologist. Actual Problems of Transport Medicine. 2010;20(2):47-57. (In Russian).
  3. Iron overloading deseases (hemochromatosis). Ed. By A. G. Rummianceva and Yu. N. Tokareva. М: Medpractica Press, 2004. 325 p. (In Russian).
  4. Belous A. M., Konnic A. T. Physiological role of iron. Kiev: Naukova Dumka, 1991. 104 p. (In Russian).
  5. Iron and human disease. Ed. By Randall BnLauffer. CRC Press, Boca Raton Ann Arbor: London – Tokio, 1992. 534 p.
  6. Lingrel JB, Kuntzweiler T. Na+,K(+)-ATPase. J Biol Chem. 1994 Aug 5;269(31):19659-62. Review. [pm id="8051040"]
  7. Kaplia A. A. Structural organization and func­tional role of Na+,K+-ATР-ase isozymes. Kiev: Kiev University Press, 1998. 162 p. (In Russian).
  8. Blanco G. Na,K-ATPase subunit heterogeneity as a mechanism for tissue-specific ion regulation. Semin Nephrol. 2005 Sep;25(5):292-303. Review. [pm id="16139684"]
  9. Lingrel J, Moseley A, Dostanic I, Cougnon M, He S, James P, Woo A, O'Connor K, Neumann J. Functional roles of the alpha isoforms of the Na,K-ATPase. Ann N Y Acad Sci. 2003 Apr;986:354-9. [pm id="12763850"]
  10. Kaplia AA, Mishchuk DO. [Na+,K+-ATPase isoenzymes of excitable tissues in pathological states]. Ukr Biokhim Zhurn (1999). 2001 Sep-Oct;73(5):17-22. Review. Russian. [pm id="12035498"]
  11. Kaplia AA, Khizhniak SV, Kudriavtseva AG, Papageorgakopulu N, Osinskiĭ DS. [Na+,K+-ATPase and Ca2+-ATPase isozymes in malignant neoplasms]. Ukr Biokhim Zhurn (1999). 2006 Jan-Feb;78(1):29-42. Review. Russian. [pm id="17147266"]
  12. Kaplia AA, Morozova VS. [Na+,K(+)-ATPase activity in polarized cells]. Ukr Biokhim Zhurn (1999). 2010 Jan-Feb;82(1):5-20. Review. Russian. [pm id="20684224"]
  13. Knowles AF, Isler RE, Reece JF. The common occurrence of ATP diphosphohydrolase in mammalian plasma membranes. Biochim Biophys Acta. 1983 May 26;731(1):88-96. [pm id="6303414"]
  14. Knowles AF, Chiang WC. Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase 2. Arch Biochem Biophys. 2003 Oct 15;418(2):217-27. [pm id="14522593"]
  15. Boldyrev AA, Bulygina ER, Kramarenko GG. [Is Na,K-ATPase the target of oxidative stress?]. Biull Eksp Biol Med. 1996 Mar;121(3):275-8. Russian. [pm id="8688526"]
  16. Kako K, Kato M, Matsuoka T, Mustapha A. Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney. Am J Physiol. 1988 Feb;254(2 Pt 1):C330-7. [pm id="2831728"]
  17. Rajasekaran AK, Rajasekaran SA. Role of Na-K-ATPase in the assembly of tight junctions. Am J Physiol Renal Physiol. 2003 Sep;285(3):F388-96. [pm id="12890662"]
  18. Kaplia AA. [The heterogeneity of the Na+, K(+)-ATPase ouabain sensitivity in microsomal membranes of rat colon smooth muscles]. Ukr Biokhim Zhurn (1999). 2011 Sep-Oct;83(5):89-93. Russian. [pm id="22276432"]
  19. Burke EP, Sanders KM, Horowitz B. Sodium pump isozymes are differentially expressed in electrically dissimilar regions of colonic circular smooth muscle. Proc Natl Acad Sci U S A. 1991 Mar 15;88(6):2370-4. [pm id="1848700"], [pmc id="PMC51233"]
  20. Xie Z., Jack-Hays M., Wang Y., Periyasamy S. M., Blanco G., Huang W. H., Askari A. Different oxidant sensitivities of the alpha1 and alpha2 isoforms of Na+,K+-ATPase expressed in baculovirus-infected insect cells. Biochem. Biophys. Res. Commun. 1995;207(1):155-159.
  21. Cadman E, Bostwick JR, Eichberg J. Determination of protein by a modified Lowry procedure in the presence of some commonly used detergents. Anal Biochem. 1979 Jul 1;96(1):21-3. [pm id="495984"]
  22. Kaplia AA, Kudriavtseva AG, Kizhniak SV, Osinskiĭ DS, Demin EN. [Na+,K+ -ATPase activity characteristics in human colon adenocarcinoma]. Ukr Biokhim Zhurn (1999). 2007 Jul-Aug;79(4):90-6. Russian. [pm id="18219996"]
  23. Kaplya O., Khyzhnyak S., Kudryavceva A., Dyomin E., Osynski D. Na+,K+-ATPase functioning in human colorectal adenocarcinomas depending on tumor differentiation. Annales Universitatis Mariae-Sklodowska (Lublin, Polonia). Sectio DDD. 2008;21(1):303-305.
  24. Chen P. S., Toribara T. Y., Warner H. Microdetermination of phosphorus. Anal. Chem. 1956;28(11):1756-1758.
  25. Huang WH, Wang Y, Askari A, Zolotarjova N, Ganjeizadeh M. Different sensitivities of the Na+/K(+)-ATPase isoforms to oxidants. Biochim Biophys Acta. 1994 Feb 23;1190(1):108-14. [pm id="8110803"]
  26. Huang WH, Wang Y, Askari A. (Na+ + K+)-ATPase: inactivation and degradation induced by oxygen radicals. Int J Biochem. 1992 Apr;24(4):621-6. [pm id="1325381"]
  27. Goldshleger R, Bar Shimon M, Or E, Karlish SJ. Metal-catalysed cleavage of Na,K-ATPase as a tool for study of structure-function relations. Acta Physiol Scand Suppl. 1998 Aug;643:89-97. Review. [pm id="9789550"]
  28. Goldshleger R, Patchornik G, Shimon MB, Tal DM, Post RL, Karlish SJ. Structural organization and energy transduction mechanism of Na+,K+-ATPase studied with transition metal-catalyzed oxidative cleavage. J Bioenerg Biomembr. 2001 Oct;33(5):387-99. Review. [pm id="11762914"]
  29. Krstić D, Krinulović K, Vasić V. Inhibition of Na+/K(+)-ATPase and Mg(2+)-ATPase by metal ions and prevention and recovery of inhibited activities by chelators. J Enzyme Inhib Med Chem. 2005 Oct;20(5):469-76. [pm id="16335055"]
  30. Floyd RV, Wray S, Quenby S, Martín-Vasallo P, Mobasheri A. Expression and distribution of Na, K-ATPase isoforms in the human uterus. Reprod Sci. 2010 Apr;17(4):366-76. Epub 2010 Jan 11. [pm id="20065300"], [cr id="http://dx.doi.org/10.1177/1933719109355196"]
  31. Shelly DA, He S, Moseley A, Weber C, Stegemeyer M, Lynch RM, Lingrel J, Paul RJ. Na(+) pump alpha 2-isoform specifically couples to contractility in vascular smooth muscle: evidence from gene-targeted neonatal mice. Am J Physiol Cell Physiol. 2004 Apr;286(4):C813-20. Epub 2003 Nov 19. [pm id="14627611"]

Creative CommonsThis work is licensed under a Creative Commons Attribution 4.0 International License.